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Abstract

In this paper, a locality constraint distance metric learning is proposed for

traffic congestion detection. First of all, an accurate and unified definition of

congestion is proposed and the congestion level analysis is treated as a regres-

sion problem in the paper. Based on that definition, a dataset consists of 20

different scenes is constructed for the first time since there exists no traffic con-

gestion dataset containing multiple scenes. To characterize the congestion level

in different scenes, the low-level texture feature and Kernel Regression is uti-

lized to detect traffic congestion level. To reduce the influence among different

scenes, a Locality Constraint Distance Metric Learning (LCML) which ensured

the local smooth and preserved the correlations between samples is proposed.

The extensive experiments confirm the effectiveness of the proposed method.

Keywords: Distance metric learning, locality constraint, kernel regression,

traffic congestion analysis

1. Introduction

As the development of the society, the traffic has become more and more

congested around the world. The traffic jams not only waste our time and

resources, but also create more pollutions and accidents. If the traffic congestion

level can be automatically detected, it will be easier to relieve the traffic jams.5

There are three popular devices that can be utilized to detect congestion

level. The first one is Loop Detector [1] whose installation and maintenance of

Preprint submitted to Pattern Recognition November 14, 2016



the devices is complicated and the detection range is very limited. The second

one is GPS based smart cell phone and vehicle. This method is popular because

of the wide detection range, but the precision of the congestion level detection10

is low. The last one is camera. The cameras are very popular nowadays, so,

the detection range could be ensured. What’s more, the detection could be very

precise.

Many approaches are proposed to detect congestion level from videos [2, 3].

Most of them detect congestion by analyzing the key points or moving areas.15

The number of key points or moving blobs and their speed can be used to

estimate the congestion. These methods are effective to answer whether it is

a traffic jam but can’t determine the exact congestion level. Besides, these

methods solve this problem in only one specific scene which is not useful for real

applications.20

Unfortunately, the research of traffic congestion analysis is limited because

there exist many problems. The first one is that the researchers treated conges-

tion detection as a classification task which simplifies the problem but limits its

usage in real applications. The second is that there exists no large scale dataset

containing different scenes for traffic congestion analysis. The most challenge25

is the different illumination, occlusion level, camera angles and road conditions

in various scenes. These problems make the traffic congestion status hard to

analyze.

To remedy these problems, an accurate and unified definition is first pro-

posed. With this definition, the congestion analysis becomes a regression prob-30

lem since the label of congestion level is a real number between 0 to 1. At the

same time, a dataset consists of 20 different scenes is conducted to serve as the

platform for congestion analysis.

To reduce the effect of different conditions which makes the congestion level

hard to analyze, the metric learning [4, 5] is utilized. However, traditional35

metric learning for regression predicts the value of a sample by measuring its

distance to all the other training samples. But, the performance is bad since the

generalization ability is limited and different scenes will affect the prediction.
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Thus, a locality constraint metric learning is proposed in which only several

nearest neighbors are considered.40

The contributions of the paper are summarized as follows:

• An accurate and unified definition of congestion is proposed. With the

definition, the question of how congested the traffic status is could be

answered. Besides, the congestion level in different scenes can be compared

in a unified framework.45

• A dataset consisting of 20 different scenes is constructed for the first time

to promote the research of traffic congestion analysis. The videos in this

dataset contain different illumination, camera angles and road conditions.

This dataset can serve as a platform for the research of congestion level

regression.50

• A locality constraint metric learning is proposed for congestion regression.

Since the difference among various scenes affects the performance of con-

gestion regression, this approach is proposed to reduce the defect across

different scenes through constraining that only the neighbors of a testing

sample can contribute to the prediction.55

The remaining part of this paper is as follows. Relevant works are reviewed

in Section 2 and the definition and dataset are presented in Section 3. Then,

the details of the proposed method are elaborated in Section 4. After the ex-

perimental results are reported and discussed in Section 5, the conclusion and

future works are presented in Section 6.60

2. Related Work

In this section, the relevant works of congestion detection and metric learning

are briefly reviewed.
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2.1. Congestion Detection

The congestion detection algorithms can be divided into two categories. The65

first category is based on the analysis of key points and moving areas. Another

is based on direct feature extraction and classification.

The assumption of first category is that more congested traffic scenes con-

tain more moving objects. Hu et al. [6] proposed an algorithm that classifies

congestion videos based on the segmentation of moving vehicles. Firstly, the70

moving objects are segmented by background subtraction method [7]. Then,

the speed of the moving blobs are calculated by Optical Flow [8]. Finally, the

percentage of moving blobs and their speed can be served as the features. Fuzzy

logic is utilized for the final decision. Sobral et al. [9] proposed an approach

which combined the features of key points and moving blobs together. The75

crowd density is first evaluated by background subtraction algorithm. Then,

the speed is estimated by Kanade-Lucas-Tomasi (KLT) algorithm [10]. These

methods is rely on the preprocessing like Background Subtraction and Tracking.

Thus, the performance of these congestion detection methods is limited because

of the uncertain preprocessing.80

The purpose of the other category is to design congestion related features.

Derpanis et al.[11] proposed the Spatialtemporal Orientation Analysis feature

motivated by the visual dynamics of congested scenes. Riaz et al.[12] encoded

motion information by analyzing the statistics of motion vectors. To combine

the appearance and motion information together, Dallalzadeh et al. [13] pro-85

posed the symbolic representation. These methods don’t rely on the preprocess-

ing algorithms which make them work well in a specific scene. However, how to

design the features that can cross congested scenes is still a challenging task.

2.2. Metric Learning

Metric Learning is the task to learn a good distance measurement. The aim90

of the metric learning is to minimize the distance of samples from the same class

and maximize the distance from different classes [14].
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Most of the distance learning algorithms are designed for classification task

[15, 16], such as image retrieval [17], person Re-identification [18] and face recog-

nition [19, 20]. Large Margin Nearest Neighbor (LMNN) [21, 22] is proposed95

to learn a Mahalanobis distance for K Nearest Neighbor (K NN) classification.

Information-Theoretic Metric Learning (ITML) [23] is also proposed for K NN

classification. The difference is that the distribution parameterized by distance

metric M is regularized to be closed to a prior distribution. Neighborhood Com-

ponent Analysis (NCA) [24] is another linear metric learning algorithm which100

optimized the classification performance based on the Leave-one-out validation.

To exploit the negative constraint lacking in RCA, Discriminative Component

Analysis (DCA) [25] is proposed.

The metric learning can also be included into regression task. Metric Learn-

ing for Kernel Regression (MLKR) [26] is proposed to learn a distance metric105

for kernel regression. To combine the sparsity into the framework, Kernel Re-

gression with Sparse Metric Learning (KRSML) [27] is proposed to regularized

the distance metric with a mixed (2,1)-norm. Xiao et al. [28] proposed an

application which utilized metric learning for human age estimation.

Recently, many deep metric learning methods are proposed with the de-110

velopment of deep learning. Hu et al. [29] proposed an deep metric learning

method to compare the similarity of two faces by minimizing the intra-class

variation and maximize the inter-class variation. Li et al. [30] proposed to learn

a suitable metric with the help of community-contributed images. Song et al.

[31] proposed an novel structural objective function on the lifted problem which115

is proved to be effective for image retrieval.

3. The Definition and Dataset

In this section, a unified and accurate definition is first presented. And

then, the detail of the traffic congestion dataset and the corresponding labeling

method are introduced.120
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Figure 1: The proposed definition is based on the time-space congestion.

3.1. Definition

The congestion level is define as the occupancy of the moving objects in the

domain of space-time. In literature, the congestion can be measured by spatial

congestion and temporal congestion which called density and occupancy respec-

tively [1]. As shown in Figure 1, the density can only measures the congestion125

at a point of time, while the occupancy can only measures the congestion at a

point of space. The proposed definition of congestion considers the spatial and

temporal information simultaneously This definition is accurate and unified, so

the comparison of congestion level in different scenes becomes possible.

Formally, the congestion can be expressed as follows:

congestion =

∑
x,y,t

f(x, y, t)

width× length× time
(1)

where congestion ∈ (0, 1) is the congestion level, and time is the number of

frames in a video clip. width and length are the width and length of a road.

f(x, y, t) is defined as:

f(x, y, t) =

 1, occupied

0, not occupied
(2)

which indicates that whether a point is occupied by a moving object.130

3.2. Traffic Congestion Dataset

Since there exists no dataset for cross scene congestion level detection, a new

dataset which consists of 20 different scenes is constructed. First, large amount

of videos containing different streets and weather conditions are collected. The
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Figure 2: Typical images of the traffic congestion dataset.

resolution of these videos are equal or larger than 1080 × 720. The average135

length of these videos is 30 minutes. Different direction on same road is treated

as different scenes. Typical images are shown in Figure 2

With the definition, the calculation of the real congestion level needs a pixel-

wise labeling which is time-consuming. To remedy this, we suppose that vehicles

and lanes have the same width. With this assumption, the congestion level can

be reduced as follows:

congestion =

∑
y,t
f(y, t)

height× time
(3)

where height can be seen as the length of the road.

With the simplification, the moving objects and road can be represented

as a line along them and the congestion level can be calculated easily. The140

visualization of labeling is shown in Figure 3. Specifically, the length of lines
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on the road is represented by the length of a line along it. Similarly, the length

of vehicles can be estimated in the same way. Then, the congestion level can

be calculated by the fraction of total length of vehicles and the total length of

lanes.145

Since the perspective transformation can be heavily affect the real congestion

level, it is considered in the labeling procedure. The perspective transformation

causes that the vehicles far from the camera will be smaller than the vehicles

close to the camera. Motivated by this, the weight of pixels at the top of images

(where the vehicles are far from the camera) should be larger. After the perspec-150

tive is considered, the variation of the congestion level caused by perspective

transformation is reduced. As shown in Figure 4, the congestion level is more

smooth after the perspective transformation is taken into consideration.

4. Our Method

In this section, the details of the proposed method are presented. First of155

all, the texture feature of image is extracted as low-level features. Then, a

distance metric is learned by the proposed Locality Constraint Metric Learning

algorithm with the precomputed features. Based on the learned metric, the

congestion level can be efficiently detected by Kernel Regression.

4.1. Locality Constraint Distance Metric Learning160

The influence among different scenes makes the prediction of congestion

level a hard task. To reduce the effect of different scenes, a locality constraint

distance metric learning is proposed. This method only takes the neighbors of

the testing sample into consideration, since the testing sample and its neighbors

has high probability of belonging to the same scene. That reduces the effect165

among scenes efficiently.

The Kernel Regression can be treated as the weighted sum of training sam-

ples. The weight should be related to the similarity between samples. Formally,

given a feature vector xi of a sample, the corresponding congestion level ŷi can
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The length of road

0.8729 0.7812 0.8776 0.8216

0.5683 0.43860.3573 0.5703

Figure 3: The visualization of labeling method. In this figure, two different scenes is used for

examples. The numbers on the binary image indicate the congestion level. In the proposed

labeling method, each vehicle can be represented by a line along it. Since the there are two

lanes in the road, the length of road is represented by two lines as the bottom image shows.
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Figure 4: The congestion level is more smooth after the perspective transformation is taken

into consideration. In this figure, the horizontal axis is the frame number and the vertical axis

is the congestion level. The red stars are congestion level without perspective transformation.

The blue circles are congestion level with perspective transformation.

be calculated as:

ŷi =

∑
j 6=i yikij∑
j 6=i kij

, (4)

where kij refers to the kernel function which is defined as:

kij =
1

σ
√

2π
exp(−dij

σ
), (5)

where dij is the distance of xi and xj . Note that, σ is fixed to 1 for simplifica-

tion. Usually, the Euclidean distance is included as the distance measurement.

However, many works have shown that the learned metric can generate better

performance. Thus, the distance metric learning is included to learn a better170

distance measurement.

In metric learning, the distance between two vector xi and xj is calculated

as follows:

dij = (xi − xj)>M(xi − xj), (6)

where M is the learned distance metric that can transform the features to

learned space and produce better performance. Note that M needs to be pre-

served to be semi-definite, which is hard to satisfy. Motivated by [26], M can

be decomposed to A>A. Then, equation 6 can be reformulated as follows:

dij = ‖A(xi − xj)‖2. (7)
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To learn the distance metric L, the mean squared error between the ground

truth and the prediction can be used as the loss function:

Lmse =
∑
i

(yi − ŷi)2 + β
∑
j 6=i

(kij × dij)

 , (8)

where yi is the ground truth and ŷi is the prediction. dij is the distance of

two samples and kij can be treated as the weight in the Kernel Regression in

Equation 4. This regularization term is used to punish the weights of xj that is

far from xi.175

To ensure the divergence invariant under scaling of the feature space, the

LogDet divergence [23] is utilized. Then, the final loss function is as belows:

L = Lmse + βDld(A>A,M0), (9)

where M0 is the prior metric which is set as identity matrix in our experiments.

The Dld(M,M0) is defined as:

Dld(M,M0) = tr(MM−1)− log det(MM−10 )− d. (10)

Motivated by [32], Dld(M,M0) can be replaced by:

Dld(M,M0) = tr(MM−1)− log det(M). (11)

4.2. Approximation and Optimization

To minimize the optimization problem in Equation 8, an approximation of

the problem is proposed. The aim of Equation 8 is to find out some neighbors of

sample xi in the training set and give a correct prediction through the weighted

average of these neighbors. That suggests we can use K neighbors for prediction

instead of all samples. This greatly reduced the influence among different scenes.

Thus, Equation 1 can be reformulated as:

ŷi =

∑
j∈N(i) yikij∑
j∈N(i) kij

. (12)
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Raw feature space Learned feature space

LCML

Figure 5: The proposed metric learning algorithm constrains that the value of a sample can

only be approximated by its neighbors, which minimizes the influence among different scenes.

In this Figure, Each point represent the feature of the congestion level in the feature space.

In LCML, only neighbors are considered for prediction as the dotted lines show.

where N(i) is the set of neighbors of xi. Consequently, Lmse loss can be reduced

as follows:

Lmse =
∑
i

(yi − ŷi)2. (13)

This final problem can be efficiently solved by gradient decent algorithms and

preserve the locality at the same time. To solve this optimization problem, the

gradient of L with respect to A is calculated as follows:

∂L
∂A

=
∂Lmse

∂A
+ β

∂Dld(A>A,M0)

∂A
, (14)

where xij = xi − xj and

∂Lmse

∂A
= 4A

∑
i

(ŷi − yi)
∑

j∈N(i)

(ŷj − yj)kijxijx>ij , (15)

and
∂Dld(AA>,M0)

∂A
= 2A(M−10 + (A>A)−1) (16)

The details of the gradient decent procedure are shown in Algorithm 1. In this

algorithm, the X is the feature matrix containing n samples in <d and Y is the180

corresponding congestion level. The learned transformation A is obtained by

minimizing the loss function L defined in Equation 9.
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Algorithm 1 Locality constraint metric learning

Input: X: feature matrix containing n samples in <d;

Y: n corresponding congestion level.

1: repeat

2: Calculate ∇A← ∂L
∂A via Equation 14

3: Initialize Abest ← 0, Lbest ← 0

4: Calculate A′ ← A− δ∇A

5: Calculate L′ ← L(A′) via Equation 9

6: if L′ < Lbest then

7: Update Abest: Abest ← A′

8: end if

9: until A is convergence.

Output: The learned transformation A.

5. Experiments

In this section, extensive experiments are conducted to confirm the effective-

ness of the proposed method. Firstly, the experimental parameters are selected185

through cross-validation. Then, the proposed method is compared to some tra-

ditional algorithms. After that, the effectiveness of the feature and classifier is

evaluated.

5.1. Parameter Settings

The constructed dataset consists of 20 different scenes which has different190

lights, occlusions and road conditions. The average length of these videos is 30

minutes. The resolutions are 1280 × 720 and 1920 × 1080. Typical images are

shown in Figure 2.

In the experiments, 5000 samples are used for training, 1500 for validation

and 1500 for testing. The number of neighbors K is set as 100 and 10 for training195

and testing as shown in Figure 6. Note that the Mean Squared Error (MSE) is

employed for the evaluation. The lower MSE indicates better performance. The
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Figure 6: The axises are K in the training, K in the testing, and Mean Squared Error. For

the best performance, K is set as 100 and 10 for training and testing. Note that the lower

MSE indicates better performance.
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Figure 7: The selection of parameter β. In this figure, the horizontal axis is the different β

and the vertical axis is the Mean Squared Error. Note that the lower MSE indicates better

performance.

parameter β in Equation 9 is set as 0.1 through cross validation. The result is

shown in Figure 7.

5.2. The evaluation of the proposed method200

In this section, the proposed method is compared to some traditional algo-

rithms. The comparison methods are Linear Regression (LR), Kernel Regres-

sion (KR) [33] and Metric Learning for Kernel Regression (MLKR) [26]. In

this experiment, the low-level texture feature is utilized as the representation of

congestion level. The final results comparison is shown in Table 1.205
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Figure 8: The comparison of different features and classifiers. In this figure, 1−20 of the hor-

izontal axis are the results of the experiments in which the training and testing are performed

on only one scene. 21 of the horizontal axis is the result of the experiment in which the whole

dataset (20 different scenes together) is included for training and testing.

As shown in Table 1, the performance of Kernel Regression is better than

Linear Regression, which indicates that a non-linear classifier outperforms a lin-

ear classifier for congestion regression. It is unsurprising since the cross scenes

congestion level detection is a non-linear regression problem. However, it is

surprising that Metric Learning for Kernel Regression is not superior to Kernel210

Regression. The result indicates that Metric Learning is ineffective under the

influence of different scenes. After the locality constraint is added to the loss

function, Metric Learning shows its superiority. Thus, the influence among dif-

ferent scenes will affect the prediction of Metric Learning for Kernel Regression,

and locality constraint can reduce that influence efficiently.215

The reason why Locality Constraint Metric Learning outperforms other

methods is that the locality is preserved during the learning of distance metric.

The locality is guaranteed by constraining that only neighbors of a sample can

be included for prediction. With this restraint, the similar congestion scenes

will have similar prediction since their neighbors should be similar as well.220
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Methods LR KR MLKR LCML

MAE 0.104 0.083 0.089 0.076

MSE 0.038 0.013 0.014 0.010

Table 1: Comparison of Linear Regression (LR), Kernel Regression (KR), Metric Learning for

Kernel Regression (MLKR) and the proposed Locality Constraint Distance Metric Learning

(LCML). MAE is mean absolute error and MSE is mean squared error.

5.3. The Effectiveness of Feature and Classifier

To confirm that the feature is useful for congestion regression, the mid-level

features [34] are included as the comparison feature. The extraction of mid-level

feature is consists of dictionary learning and feature encoding. Specifically, the

Batch K-means [35, 36] is included for dictionary learning and the sparse coding225

[37] is utilized to encode an image into final descriptor. The results are shown

in Figure 8.

First of all, if the training and testing is performed on only one scene, the

performance is better than the training and testing across different scenes. As

shown in Figure 8 that the most errors of 1− 20 (single scene, and remind that230

the constructed dataset contains 20 different scenes) is lower than the error of

21 (multiple scenes). That confirms the influence of different scenes will drop

the congestion detection performance.

Secondly, the low-level feature is superior to the mid-level features. The

mid-level feature is frequently used in scene classification problem because of235

its good ability to distinguish different scenes [38]. However, every scene has

different congestion level which will confuse the detection of congestion level. In

contrast, the low-level texture features can better reflect congestion level since

most congested scenes have dense texture.

Lastly, The most popular regression method is Linear Regression (LR). How-240

ever, Kernel Regression (KR) is shown to be superior than LR in the experiment.

That indicates that the non-linear classifier is superior to linear classifier for con-

gestion level regression. It is unsurprising since the cross scenes congestion level
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detection is a non-linear regression problem.

5.4. The Effectiveness of Locality Constraint Metric Learning245

To confirm the effectiveness of Locality constraint Metric Learning, the Met-

ric Learning for Kernel Regression is included as the comparison. A visualization

of the regression results is shown in Figure 10.

As shown in Figure 10, the performance of Linear Regression is the worst

since the congestion regression is a non-linear problem. The performance of250

Metric Learning for Kernel Regression is better. However, the influence a-

mong different scenes makes the prediction a hard work. The proposed Locality

Constraint Metric Learning outperforms other methods since the effect among

different scenes is reduced.

To further confirm that the locality constraint metric learning can efficient-255

ly reduce the influence of different scenes. An image retrieval experiment is

conducted. In this experiment, 9 images from different scenes are randomly

selected as the queries. 3 nearest neighbors of these queries are selected from

the whole training set (containing 20 different scenes) with the proposed LCML.

The result is shown in Figure 9.260

As shown in Figure 9, most of the neighbors and queries are from the same

scene and similar congestion level except for 3 failures which come from complex

scenes that have no obviously road boundary. If all the training samples are

included to predict the congestion level, the different scenes will influent each

other, which decreases the detection performance. Only the neighbors which265

have same scene and similar congestion level are considered in LCML. Thus,

the influence of different scenes is reduced and the performance of congestion

level detection is increased with LCML.

6. Conclusion

To remedy the congestion detection problem, a locality constraint metric270

learning is proposed to reduce the influence among different scenes. A unified
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Figure 9: Most of the neighbors and queries are from the same scene and similar congestion

level with LCML. Only the neighbors which have same scene and similar congestion level are

considered in LCML. Thus, the influence of different scenes is reduced and the performance

of cross scene congestion level detection is improved. In this figure, the first column is queries

and the rest are nearest neighbors. The images in red boxes are failures.
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Figure 10: The visualization of the regression results. The proposed method outperforms

MLKR, as the red arrows point.

and accurate definition of congestion is first proposed to better describe the

traffic congestion level. Based on the definition, a dataset consists of 20 different

scenes is constructed to serve as a platform for congestion analysis. To solve this

problem, the low-level texture feature and kernel regression which outperform275

mid-level feature and linear regression are included as the feature and classifier.

Since the influence of different scenes makes the detection of traffic congestion a

difficult task, a locality constraint metric learning is proposed to reduce such an

influence. The extensive experiments confirms the effectiveness of the proposed

method.280

In the future, some density based features shall be exploited to better rep-

resent the congestion level. Besides, a hierarchical model shall be exploited as

well since the congestion level is a high level semantic conception.
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